Publication	Year	Author	Cells	miRNA	miRNA concentration	Studied protein	Domain
MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells	2009	Li T. & Al	DU145, PC-3	pre-miR-21 (mimics)		PDCD4, TPM1, MARCKS	Prostate cancer
MicroRNA-146a Feedback Inhibits RIG-I-Dependent Type I IFN Production in Macrophages by Targeting TRAF6, IRAK1, and IRAK21	2009	Hou J. & Al	HEK293	miR-146a (mimics), anti-miR-146a	10 nM	TRAF6, IRAK1, IRAK2	Viral infection regulation
miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer	2010	Rauhala HE. & Al	22Rv1	pre-miR-193b	5 nM		Prostate cancer
MicroRNA-148/152 Impair Innate Response and Antigen Presentation of TLR-Triggered Dendritic Cells by Targeting CaMKIIa	2010	Liu X. & Al	Dendritic cells	miR-148a (mimics), miR-148b (mimics), miR-152 (mimics), anti-miR-148/152		СаМΚΙΙα	Innate response and antigen presentation
microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells	2010	Liu L. & Al	HT29, LoVo	miR-195 (mimics)	50 nM	Bcl-2	Human colorectal cancer
microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity	2010	Zhang J. & Al	Hep3B, SMMC7721	miR-22 (mimics)	50 nM	HDAC4	Hepatocellular carcinoma
miR-24 Regulates Apoptosis by Targeting the Open Reading Frame (ORF) Region of FAF1 in Cancer Cells	2010	Qin W. & Al	DU-145	miR-24 (mimics)		FAF1	Apoptosis in cancer cells

Publication	Year	Author	Cells	miRNA	miRNA concentration	Studied protein	Domain
MicroRNA-466l Upregulates IL-10 Expression in TLR-Triggered Macrophages by Antagonizing RNA-Binding Protein Tristetraprolin-Mediated IL- 10 mRNA Degradation	2010	Ma F. & Al	HEK293T	miR-466l		IL-10	Immune response
MicroRNA-125a Contributes to Elevated Inflammatory Chemokine RANTES Levels via Targeting KLF13 in Systemic Lupus Erythematosus	2010	Zhao X. & Al	Human primary T cells	miR-125a (mimics), anti-miR-67		RANTES, KLF13	Inflammatory response
Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival	2010	Greither T. & Al	HEK293	miR-155, miR-203, miR-210 (mimics), miR-222		BACH1, HIF-1A, PPP3R1	Pancreatic cancer
MicroRNA-155 Targets SMAD2 and Modulates the Response of Macrophages to Transforming Growth Factor-β	2010	Louafi F. & Al	THP1	pre-miR-155, pre- miR-221	100 nM	SMAD2	Cellular response to TGF-β
MicroRNA-99a Inhibits Hepatocellular Carcinoma Growth and Correlates with Prognosis of Patients with Hepatocellular Carcinoma	2011	Li D. & Al	HepG2, SMMC-7721, Huh7	miR-99a (mimics)	50 nM	IGF-1R, mTOR	Hepatocellular carcinoma
Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers	2011	Garcia AI. & AI	RG37	pre-miR-146a, pre- miR-146b-5p	100 ng	BRCA1	Breast cancer

Publication	Year	Author	Cells	miRNA	miRNA concentration	Studied protein	Domain
Identification of miRNomes in Human Liver and Hepatocellular Carcinoma Reveals miR-199a/b-3p as Therapeutic Target for Hepatocellular Carcinoma	2011	Hou J. & Al	Нер3В	miR-199a, miR-199b- 3p		PAK4	Hepatocellular carcinoma
Expression of Members of the miRNA17–92 Cluster During Development and in Carcinogenesis	2011	Jevnaker AM. & Al	E10	miR-17-3p	20 nM		Embryogenesis, carcinogenesis
MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7	2012	Sun D. & Al	RAW 264.7	miR-26 (mimics), anti-miR-26		ABCA1, ARL7	Cholesterol
MicroRNA-466l inhibits antiviral innate immune response by targeting interferonalpha	2012	Li Y. & Al	Macrophages	miR-466l (mimics)	10 nM	IFN-α	Antiviral innate immune response
Inductive microRNA-21 impairs anti- mycobacterial responses by targeting IL-12 and Bcl-2	2012	Wu Z. & Al	Macrophages	miR-21 (mimics), anti-miR-21		IL-12, Bcl-2	Anti-mycobacterial response
Inducible MicroRNA-223 Down- Regulation Promotes TLR-Triggered IL-6 and IL-1b Production in Macrophages by Targeting STAT3	2012	Chen Q. & Al	RAW 264.7	miR-223 (mimics)	10 nM	STAT3	Macrophage activation
miR-155 mediates suppressive effect of progesterone on TLR3, TLR4- triggered immune response	2012	Sun Y. & Al	RAW 264.7	miR-155 (mimics), anti-miR-155	10 nM	SOCS1	Progesterone in immune response
Interferon-β-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF	2012	Zhang J. & Al	RAW 264.7	miR-155 (mimics)		SOCS1, MITF	Osteoclast differentiation

Publication	Year	Author	Cells	miRNA	miRNA concentration	Studied protein	Domain
Identification of microRNA-regulated gene networks by expression analysis of target genes	2012	Gennarino VA. & Al	A549	miR-519d (mimics), miR-190 (mimics), miR-340 (mimics)	20 nM		Cell proliferation, morphology, scattering
Regulation of the Hif-system by micro- RNA 17 and 20a – Role duringmonocyte-to-macrophage differentiation	2013	Poitz DM. & Al	HeLa	pre-miR-17, pre-miR- 20a	100 nM	Hif	Monocyte-to-macrophage differentiation
MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1	2013	Ji F. & Al	hFOB 1.19, MG63, U2OS	miR-133a (mimics), anti-miR-133a	20 nM, 50 nM	Bcl-xL, Mcl-1	Osteocsarcoma
MicroRNA-16 affects key functions of human endothelial progenitor cells	2013	Goretti F & Al	Endothelial progenitor cells	miR-16, anti-miR-16		CCND1, CCNE1, CDK6	Injured tissues repair
MicroRNA-92a Negatively Regulates Toll-like Receptor (TLR)-triggered Inflammatory Response in Macrophages by Targeting MKK4 Kinase	2013	Lai L. & Al	HEK293, RAW 264.7	miR-92a	20 nM	MKK4	Inflammatory response
miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1	2013	Su X. & Al	RAW 264.7	miR-30b, anti-miR- 30b	20 nM	Notch1	Development and functional regulation of dendritic cells
Adenosine Stimulates the Migration of Human Endothelial Progenitor Cells. Role ofCXCR4 and MicroRNA-150	2013		Endothelial progenitor cells	pre-miR-150, anti- miR-150	20 nM	CXCR4	Revascularization
miR-192 Directly Binds and Regulates Dicer1 Expression in Neuroblastoma	2013	Feinberg- Gorenshtein G. & Al	SHEP, NUB6	miR-192 (mimics), anti-miR-192	0,5 nM, 1 nM	Dicer1	Cell viability, proliferation, migration of neuroblastoma

Publication	Year	Author	Cells	miRNA	miRNA concentration	Studied protein	Domain
Epigenetic Regulation and Functional Characterization of MicroRNA-142 in Mesenchymal Cells	2013	Skarn M. & Al		miR-142-5p (mimics), miR-142- 3p (mimics)	15 nM		Regulation and function of mesenchymal cells
A Key Role of microRNA-29b for the Suppression of Colon Cancer Cell Migration by American Ginseng	2013	Poudyal D. & Al	HCT 116, LoVo, DLD- 1	anti-miR-29b	10 nM	MMP-2	Colorectal cancer
Demethylation of the miR-146a promoter by 5-Aza-2'-deoxycytidine correlates with delayed progression of castration-resistant prostate cancer	2014	Wang X. & Al	LNCaP, PC3	anti-miR-146a			Androgen-dependent prostate cancer